Skarn formation and ore deposition at the Gunung Bijih Timur (Ertseberg East) complex, Irian Jaya, Indonesia

by

Jeffrey Neil Rubin, B. S., M. A.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August, 1996
Linguistic map of Scotland showing partial speciation of the word "skam" (Mather, 1975).
Acknowledgments

Even misery begets gratitude. It became apparent to me (and presumably to those around me) early on that this might not have been such a good idea after all. Although I unequivocally (and at great length) proved that graduate school really wasn't where I wanted to be (again), many people made life easier and/or more pleasant during this experience. Obviously this project couldn't have happened without the largess of Freeport McMoRan and its subsidiaries. CEO (and UT Geology grad) Jim Bob Moffett made this experiment his personal project and backed it with all of his considerable will. Although Jim Bob made the decision, Steve Van Nort allowed it to happen. I couldn't come close to counting the number of times that Steve helped us out (including some rather tight spots). He possesses all of the important characteristics of a fine leader: integrity, intelligence, compassion, decisiveness, and apparent imperturbability. Nice guy, too. I can't say that I feel I owe anything to UT, but I'll always feel indebted to Steve. Many of the Freeport staff in New Orleans, Cairns, and Indonesia, offered their services and support - too many to list, actually. There were several who stood out. Kris Hefton, Dave Potter, Tom Collinson, Larry Johnson, and Alan Schappert (and their families) invited us into their homes on several occasions and definitely made us
feel at home. Many others on the geology staff were there to answer questions, give tours, help locate core (no small feat). Chuck and Mary Jane Lowman, and Gene and Claudia Strouss also opened their homes to us (and they're not even geologists!). Boedijono and Rachmat Wirawan enabled me to get through DOZ in one piece (and Boedijono generously parted with some rare botryoidal bomite (gold-bearing at that) for my studies when no one else would), Utu Mekel seemed to remember where everything was, and Ramli "Bubba" Rantung seemed to be able to smile through anything. Leo Wowiling and his crew of draftsmen patiently responded to my numerous requests for maps, sections, and diamond drill data. Yvette Gingler of Independent Mining Consultants was able to provide me with assay data and maps that no one else could. Finally, Gerry Chatham and Elizabeth Mancuso handled all sorts of details stateside and over at "Jobsite". Terima kasih banyak.

My dissertation committee may have been the most surprised group among anyone associated with my research when, after more than two years of near inactivity, I decided to finish (and then, five months after my defense, I finally did). Rich Kyle, my supervisor, may be the hardest working member of the UT Geology faculty. It's a lot easier for a supervisor to expect some sign of activity from his students when he's working as hard or harder than they are. With pressure on to "show results" from the Irian Jaya research, he probably was less than thrilled with my general lack of motivation (and the fact that I had a full-time job that inevitably would delay completion of my studies). Still, he provided encouragement, support (moral and logistical), and advice.
Dan Barker offered his usual blend of sagacity, dry humor (he provided the reference for the frontispiece), and practical outlook. I asked Mark Cloos to be on my committee because I had little interest in structure or tectonics, and figured that he would force me to think about some concepts that I'd otherwise avoid. Mark and I have different philosophies about the importance of geology in the life of a geologist. On the other hand, I've always been impressed by his willingness to ask questions that many would consider embarrassingly basic (how many questions have gone unasked for that reason?).

Jon Price has been a friend and mentor for more than ten years. He was my first (and best) boss at the Bureau, and one of the Bureau's few true scientists before his escape to Nevada. In the short time we spent together in my field area, he provided considerable insight and helped me formulate some basic features of my model (blame him). In fact, Jon probably prompted me more than anyone to pursue a Ph. D. (blame him for that, too). Larry Meinert came on board a bit after the rest, but brought with him a worldwide skam perspective, a slew of references that came in handy, and good wine. Larry was the first to impart to me the true meaning of "skam" (see Frontispiece) - I'm proud to be a skam geologist.

Further thanks go to Jeff Horowitz, who provided invaluable assistance when I desperately needed it. Greg Thompson became a pretty fair craftsman when it came to making thin sections - the doublets he cranked out on short notice were superb. Dennis Trombatore and his able staff made the Geology Library a nice place to drop into, even when I wasn't looking for any literature. I have a hunch that if they let Geology librarians run UT, it would be a nicer (and certainly more customer-friendly) place.
My friends, although wondering why someone who voiced such an aversion to school always seemed to be in school, were pretty tolerant of the effects that my dissertation had on my normally sunny disposition. Phil Bennett, whom I never thought of as a faculty member (that's not an insult, Phil), allowed me to have someone to talk to about the Fire Department while I was at school, and school while I was with the Fire Department (is that good?). Phil's wife, Liz, should have been awarded her Ph. D. in listening - she does that well. Rachel Eustice and Linda Davis were two of the nicer people in the Department, and Tim McMahon, the other survivor of the original "Gang of Four", was/is one of the most intelligent people associated with the project. The quality of Tim's work guaranteed success in Phase I (and certainly made my life easier). Best of luck, Tim and Spike.

Sue Edwards, Director of Austin EMS, Gordon Bergh, Chief of Operations, Dave Williams, Special Operations Commander, and Donna Hale, Communications Commander, among others, were extremely supportive (Donna appointed herself "Dissertation Mother", vowing to keep after me to finish - guess it worked). I enjoyed reminding them that medicine's jargon is even more impenetrable than geology's. My District Commanders were very flexible regarding my scheduling needs; it made the difference. Now I can step out of an ambulance and announce, "It's OK, I'm a doctor." To those listed and to those not, thanks.

Last but not least, my family bore the brunt of my moods, but remained supportive ("Finish it!"). My wife, Kathleen, was there when I needed her - i.e., always (even coloring a figure and pasting numbers). Suffice it to say that she will be luxuriating in Godiva chocolate for some time to come.
Skarn formation and ore deposition at the Gunung Biji
Timur (Ertsberg East) complex, Irian Jaya, Indonesia

Publication No.________________\

Jeffrey Neil Rubin, Ph. D.
The University of Texas at Austin, 1996

Supervisor: J. Richard Kyle

The Gunung Biji Timur (GBT - "Ertsberg East") skarn complex,
Gunung Biji (Ertsberg) mining district, was formed within the Tertiary New
Guinea Limestone Group and is adjacent to the 2.9-Ma Ertsberg intrusion.
The complex consists of three vertically stacked orebodies (in descending
order: GBT, Intermediate Ore Zone - IOZ, Deep Ore Zone - DOZ) which
total ~ 122 Mt of ore averaging 2.0 wt% Cu, 0.8 g/t Au, and 10.6 g/t Ag.

The contact between the calcareous Faumai and dolomitic Waripi
Formations separates Ca±Mg skam (GBT and much of IOZ: together the
upper skam - US) from Mg±Ca skam (DOZ and lowermost IOZ: lower
skam - LS). The US is typified by monticellite and diopside ± forsterite.
Garnet replaced earlier-formed calc-silicate minerals. The LS consists of
forsterite ± diopside. Retrograde phases include tremolite-actinolite,
phlogopite, talc, serpentine, and chlorite. Anhydrite increases with depth.
Minor quartz fills space. Bornite and subordinate chalcopyrite are the principal ore minerals, filling interstices in magnetite, particularly in the LS. Bornite and chalcopyrite occur in highly brecciated ore in the US. Native Au occurs as inclusions in bornite and less commonly in quartz veinlets.

Fluid-inclusion and sulfur-isotope analyses indicate that the skarn and associated orebodies were formed from predominantly magmatic waters. Hot, prograde skarn-forming fluids cooled progressively. Salinities may have increased during skarn formation. Latest assemblages formed from substantially cooler and more dilute fluids.

Sulfur isotopes yield magmatic signatures for sulfides. Anhydrite displays a bimodal distribution of 34S-values, indicating igneous and sedimentary sources. Shallow emplacement and crystallization of the Ertsberg intrusion created contact-metamorphic skarn and marble. Metasomatic calc-silicate - magnetite skarn, along with Cu-Au-Ag ore, were formed by hot, saline, hydrothermal fluids from a cupola of an underlying magma chamber. Volume loss resulting from lower skarn formation led to failure of overlying rocks and dip-slip motion along a pre-existing fault, brecciating the orebodies.

GB-district Au displays generally high fineness typical of Au in porphyry/skarn systems. Native Au from the GBT complex has a wide fineness range: 920-990 and 340-820. Native Au (\pm Pd) from Grasberg is \geq 930 fine, averaging half as much Cu as GBT-complex Au. Fineness of Big Gossan Au ranges from 540 to 960, and is Cu-poor. Bornite contains most of the Ag and native Au in the GBT complex. Copper and silver correlate positively throughout the GBT complex, Grasberg, and Dom.
Table of Contents

List of Tables .. xv

List of Figures ... xviii

Chapter 1: The Gunung Bijih Timur (Eertsberg East) skarn complex,
Irian Jaya, Indonesia: Geology ... 1

Abstract ... 1

Introduction .. 3

District geology .. 9

Stratigraphy ... 9

Structure .. 15

Igneous rocks ... 17

Eertsberg intrusion .. 21

GBT complex ... 25

Upper skam (US) ... 31

Lower skam (LS) ... 48

Zonation ... 54

Paragenesis .. 73

Summary .. 77

Chapter 2: The Gunung Bijih Timur (Eertsberg East) skarn complex,
Irian Jaya, Indonesia: Geochemistry, skarn formation, and ore
deposition ... 81

Abstract ... 81

Introduction .. 83

Fluid inclusions ... 83

Monticellite ... 83

Forsterite .. 85

Quartz .. 88

Garnet ... 89
Analytical techniques ... 281

Appendix E: Isotopic analyses of sulfur and strontium in samples from
the GBT complex ... 286
Sample preparation .. 287
Analytical techniques ... 287

Appendix F: Statistical analysis of assay data from the GBT complex
and Grasberg ... 290
Methods .. 291

References .. 300

Vita .. 311
List of Tables

Table 1-1. Grades and tonnages for GB-district orebodies 7
Table 1-2. Whole-rock chemistry of the Ertsberg intrusion 19
Table 1-3. Clinopyroxene compositions from the Ertsberg intrusion 23
Table 1-4. Feldspar compositions from the Ertsberg intrusion 24
Table 1-5. Petrographic summary of the GBT complex 32
Table 1-6. Clinopyroxene compositions from the GBT complex 37
Table 1-7. Olivine and monticellite compositions from the GBT complex .. 39
Table 1-8. Garnet compositions from the GBT complex 41
Table 1-9. Magnetite compositions from the GBT complex 49
Table 1-10. Amphibole and mica compositions from the GBT complex .. 52
Table 1-11. Correlation matrix for Cu, Ag, and Au in the GBT complex. 72
Table 1-12. Summary of major features of the upper and lower skarns . 78
Table 2-1. Summary of fluid inclusion data from the GBT complex 84
Table 2-2. Summary of sulfur and strontium isotope data from the GBT complex ... 97
Table 3-1. Description and location of samples analyzed in this study 132
Table 3-2. Minerals associated with native Au in the GB district 137
Table 3-3. Representative microprobe analyses of native Au 142
Table 3-4. Representative microprobe analyses of sulfides 144
Table 3-5. Correlation matrix for Cu, Au, and Ag in selected Grasberg, GBT complex, and Dom drill core assays 155
Table A1. Underground samples from the GBT complex 168
Table A2. Samples from diamond drill holes (DDH) 173
Table B1. Non-opaque minerals identified in the GBT complex in this study .. 190
Table B2. Opaque minerals identified in the GBT complex in this study .. 191
Table B3. Petrographic table of modal abundance (vol%) for GBT proper .. 192
Table B4. Petrographic table of modal abundance (vol%) for IOZ 196
Table B5. Petrographic table of modal abundance (vol%) for DOZ ... 200
Table C1. List of microprobe analyses by sample and mineral 209
Table C2. Microprobe analyses (wt%) of amphibole, epidote, and idocrase .. 213
Table C3. Microprobe analyses (wt%) of clinopyroxene and wollastonite .. 216
Table C4. Microprobe analyses (wt%) of feldspars 226
Table C5. Microprobe analyses (wt%) of garnet 230
Table C6. Microprobe analyses (wt%) of magnetite and spinel 237
Table C7. Microprobe analyses (wt%) of micas 242
Table C8. Microprobe analyses (wt%) of olivine and monticellite 246
Table C9. Microprobe analyses (wt%) of native gold and electrum ... 252
Table C10. Microprobe analyses (wt%) of bismuth minerals 262
Table C11. Microprobe analyses (wt%) of sulfide minerals 263
Table C12. Microprobe analyses (wt%) of secondary standards 278
Table D1. Fluid inclusion data from the GBT complex 283
Table E1. Isotopic composition of S (‰) and Sr isotopes in sulfate
and sulfide minerals from the GBT complex 289
Table F1. Assay intervals from GBT-complex diamond drill holes
(DDH) used in this study .. 291
Table F2. Assay intervals from Grasberg diamond drill holes (DDH)
used in this study ... 292
Table F3. Statistical evaluation of GBT-complex assay data 299
Table F4. Statistical evaluation of Grasberg assay data 299
List of Figures

Figure 1-1. Location map for the GB district .. 5
Figure 1-2. Stratigraphy of the GB district ... 10
Figure 1-3. Geologic map of the GB district ... 12
Figure 1-4. Clinopyroxene compositions from the GBT complex 22
Figure 1-5. QAP plot showing classification of the Ertsberg intrusion .. 26
Figure 1-6. Section view of the GBT complex .. 28
Figure 1-7. Map of (A) 3540 level (GBT proper), (B) 3370 level (OZ) .. 34
Figure 1-8. Map of the 3020 level (DOZ) ... 36
Figure 1-9. Olivine compositions from the GBT complex 38
Figure 1-10. Garnet compositions from the GBT complex 40
Figure 1-11. Transmitted-light photomicrograph of garnet replacing monticellite ... 43
Figure 1-12. (A) Garnet skarn breccia, and (B) marble breccia, from 3558 level (GBT proper) ... 47
Figure 1-13. (A) Transmitted-light and (B) reflected-light photomicrographs of bornite in phlogopite cleavage 51
Figure 1-14. Reflected-light photomicrograph of magnetite with interstitial bornite ... 51
Figure 1-15. Reflected-light photomicrographs of (A) bornite-magnetite veinlet in anhydrite, and (B) chalcopyrite in anhydrite cleavage ... 56
Figure 1-16. Down-hole histograms for (A,C) metals and (B,D) mineralogy in diamond drill holes 13-5, 16-2.......................... 57

Figure 1-17. Map of 3540 level, showing concentrations of (A) Cu, (B) Au, (C) Ag, and (D) sample points................................. 62

Figure 1-18. Map of 3370 level, showing concentrations of (A) Cu, (B) Au, (C) Ag, and (D) sample points................................. 65

Figure 1-19. Map of 3020 level, showing concentrations of (A) Cu, (B) Au, (C) Ag, and (D) sample points................................. 68

Figure 1-20. Paragenetic sequence for GBT complex.............................. 74

Figure 2-1. Histograms showing homogenization temperatures (Th V) for fluid inclusions from the GBT complex 86

Figure 2-2. Histograms showing salinities (wt% NaCl eq.) in fluid inclusions from the GBT complex............................... 87

Figure 2-3. Th V-salinity plot for fluid inclusions in late quartz from DOZ... 90

Figure 2-4. Th-salinity plot of fluid inclusion data from the GBT complex, showing inferred fluid evolution.......................... 92

Figure 2-5. Sr vs. S variation diagram for GB-district anhydrites. From Kyle and Dworkin (in progress)............................... 96

Figure 2-6. Plot of temperature vs. log fO2 (after Burnham and Ohmoto, 1980), showing stability fields for sulfur species and inferred conditions for deposition of GBT-complex ores. .. 100

xix
Figure 2-7. Schematic diagram showing generation and emplacement of Ertisberg intrusion and subsequent hydrothermal alteration (after McMahon, 1994a) 106

Figure 3-1. Reflected-light photomicrographs of native Au within Grasberg and GBT-complex orebodies. 136

Figure 3-2. Reflected-light photomicrographs of native Au within Big Gossan mineralized zone. ... 140

Figure 3-3. Histograms of native Au fineness from the GB district 148

Figure 3-4. Compositional plot for native Au from the GB district 149

Figure 3-5. Plot of elevation vs. fineness of native Au from the GB district ... 152

Figure 3-6. Plots of Cu (wt%) vs. (A) Au (ppm) and (B) Ag (ppm) in selected Grasberg core .. 153

Figure 3-7. Plots of Cu (wt%) vs. (A) Au (ppm) and (B) Ag (ppm) in selected GBT-complex core .. 154

Figure 3-8. Concentration (ppm) of Ag in bornite and chalcopyrite from GB district ... 158

Figure 3-9. Comparison of GB-district Au fineness with other porphyry-related systems ... 160

Figure A1. Boundary map for COW-A, showing PTFI 10,000-m grid. 167

xx
Chapter 1: The Gunung Bijih Timur (Ertbjerg East) skarn complex, Irian Jaya, Indonesia: Geology

Abstract

The Gunung Bijih Timur (GBT - "Ertbjerg East") skarn complex was formed within the Tertiary New Guinea Limestone Group and lies adjacent to the 2.9-Ma Ertbjerg intrusion. The GBT complex consists of three contemporaneous, vertically stacked orebodies on the northern contact (in descending order: GBT proper, Intermediate Ore Zone - IOZ, Deep Ore Zone - DOZ), which make it one of the richest magnesian skarns in the world. At approximately 122 Mt of ore, averaging 2.0 wt% Cu, 0.8 g/t Au, and 10.6 g/t Ag, it also is the largest of several economic Cu-Au(-Ag) skarn deposits associated with the Ertbjerg intrusion.

Skarn composition in the GBT complex displays strong stratigraphic control, with Ca±Mg skarn (GBT and much of IOZ - together the upper skarn) overlying Mg±Ca skarn (DOZ and lowermost IOZ - the lower skarn). The boundary between the two corresponds to the stratigraphic boundary between the mostly calcareous Faumai Formation and the dolomitic Waripi Formation. The upper skarn (US) is typified by diopsidic clinopyroxene ± forsterite, with subordinate granodite garnet and monticellite. Monticellite is most abundant at the highest elevations in the complex. Garnet replaced earlier-formed calc-silicates, and garnet skarn hosts much of the high-grade ore. Other phases include wollastonite, tremolite-actinolite, clintonite, idocrase, epidote, chlorite, and serpentine. The US is characterized by intense brecciation. The lower skarn (LS)
characterized by forsterite and diopside with rare spinel. Common retrograde phases include tremolite-actinolite, phlogopite, talc, serpentine, and chlorite. Magnetite postdates most prograde phases but predates anhydrite, forming large-scale, dense bodies of subhedral grains. Anhydrite is ubiquitous in the LS. Grayish-white, nodular anhydrite bears close textural likeness to sedimentary anhydrite in the Waripi Formation, and purple space-filling anhydrite appears hydrothermal in origin. The anhydrite:carbonate ratio increases markedly with depth throughout the complex, and the Ca:Mg ratio in silicates and carbonates decreases with depth. Minor quartz fills veins and lines vugs.

Bornite and subordinate chalcopyrite are the principal ore minerals in the complex, commonly filling interstices in large-scale magnetite deposits, particularly in the LS. Chalcopyrite is more abundant, relative to bornite, in the US, where both minerals occur in highly brecciated ore. Native gold (average composition Cu_{0.1}Au_{0.85}Ag_{0.14} by weight) occurs mainly as < 10-μm inclusions in bornite and less commonly as space-fill in quartz veinlets. Molybdenite and several Bi minerals form < 5-μm inclusions in bornite and other phases. Diginite and chalcocite/djurleite are common alteration products; covellite and idalite are most common in and near breccia and fault zones.

Vertical zonation is better-developed than horizontal zonation. The ratios Ca:Mg and carbonate:sulfate decrease with increasing depth, and Cu:Fe increases with increasing depth, as do grades for Cu, Au, and Ag.