GPS MEASUREMENTS OF CRUSTAL DEFORMATION IN EASTERN INDONESIA AND PAPUA NEW GUINEA

By

Colleen W. Stevens

An Abstract of a Thesis Submitted to the Graduate
Facility of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Major Subject: Geophysics
The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Robert McCaffrey, Thesis Advisor
Steven Roecker, Member
Michael J. Gaffey, Member
Frank Spear, Member
William Kidd, Member

Rensselaer Polytechnic Institute
Troy, New York

April 1999
(For Graduation May 1999)
GPS MEASUREMENTS OF CRUSTAL DEFORMATION IN EASTERN INDONESIA AND PAPUA NEW GUINEA

By

Colleen W. Stevens

A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Geophysics

Approved by the
Examine Committee:

[Signatures]

Robert McCaffrey, Thesis Advisor

Steven Roetker, Member

Michael J. Gaffey, Member

Frank Spear, Member

William Kidd, Member

Rensselaer Polytechnic Institute
Troy, New York

April 1999
(For Graduation May 1999)
Table of Contents

List of Tables... vi

List of Figures ... vi

Abstract ... ix

Acknowledgements .. xii

Chapter 1: An introduction to the tectonics of eastern Indonesia and the Global Positioning System.. 1

1.1 Introduction .. 1

1.2 Regional Tectonics ... 3

1.3 The Global Positioning System ... 6

1.4 Data Collection .. 11

1.5 Data Processing ... 12

1.6 GPS Work in Indonesia and Papua New Guinea ... 13

Chapter 2: Crustal deformation in eastern Indonesia as determined by Global Positioning System measurements and earthquakes 27

2.1 Introduction .. 27

2.2 GPS Measurements .. 27

2.3 Plate motions in the No-Net Rotation reference frame 29

2.4 Global plate motions ... 30

2.5 Pacific-Australia convergence .. 33

2.6.1 Deformation across the island of New Guinea 33

2.6.2 The Bird's Head region of Irian Jaya .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 GPS Measurements</td>
<td>96</td>
</tr>
<tr>
<td>4.4 Waveform Modeling</td>
<td>97</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>99</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>102</td>
</tr>
<tr>
<td>Chapter 5: Conclusions</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>113</td>
</tr>
</tbody>
</table>
List of Tables

Table 1-1: Data collection and equipment summary ... 15
Table 1-2: GPS campaigns measured between 1991 and 1997. 18
Table 1-3: Field work and projects I have participated in 18
Table 2-1: Horizontal GPS velocities in the ITRF96 reference frame 53
Table 2-2: Residuals between the GPS derived ITRF96 and NNR velocities 55
Table 2-3: Poles of rotation parameters for tectonic blocks 56
Table 2-4: Velocities relative to the NAB and SAB .. 57
Table 3-1: GPS velocities in the ITRF93 reference for the Palu transect sites 90
Table 4-1: GPS site displacements between August 1993 and January 1994 103
Table 4-2: Source parameters for the October 1993 Earthquakes 103
List of Figures

Figure 1-1: Geographic and tectonic map of eastern Indonesia .. 19
Figure 1-2: Shallow seismicity for the eastern Indonesia region ... 20
Figure 1-3: Earthquake slip vectors ... 21
Figure 1-4: Tectonic map of Irian Jaya .. 22
Figure 1-5: Tectonic map of the Banda Sea region ... 23
Figure 1-6a: GPS sites in the eastern Indonesia region ... 24
Figure 1-6b: GPS sites near the Palu fault, Sulawesi ... 25
Figure 1-6c: GPS sites across the Markham Valley, PNG .. 26
Figure 2-1: Geographic and tectonic map of eastern Indonesia ... 58
Figure 2-2: Shallow seismicity for the eastern Indonesia region ... 59
Figure 2-3: Distribution of GPS sites in eastern Indonesia ... 60
Figure 2-4a: GPS-derived ITRF96 velocities ... 61
Figure 2-4b: GPS-derived ITRF96 velocities and Australia-NNR predicted velocities ... 62
Figure 2-4c: GPS-derived ITRF96 velocities and Eurasia-NNR predicted velocities 63
Figure 2-5: GPS velocities relative to the Northern Australian Block 64
Figure 2-6a: North component of the Merauke-Wamena baseline 65
Figure 2-6b: East component of the Merauke-Wamena baseline 66
Figure 2-7: Fault plane solutions for earthquakes in the Irian Jaya region 67
Figure 2-8a: North component of the Sentani-Merauke baseline 68
Figure 2-8b: East component of the Sentani-Merauke baseline ... 69
Figure 2-9a: North component of the Biak-Yapen baseline ... 70
Figure 2-9b: East component of the Biak-Yapen baseline ... 91
Figure 2-10: Fault plane solutions for earthquakes in the Banda Sea region91
Figure 2-11: Velocities relative to the Northern Australian Block7391
Figure 2-12: Velocities relative to the Southeast Asian Block91
Figure 2-13a: North component of the Kupang-Denpassar baseline75
Figure 2-13b: East component of the Kupang-Denpassar baseline76
Figure 2-14a: North component of the Timika-Kaimana baseline77
Figure 2-14b: East component of the Timika-Kaimana baseline78
Figure 2-15: New tectonic map for the eastern Indonesia region79
Figure 3-1: Tectonic map of Sulawesi ...91
Figure 3-2: Velocities of Palu transect sites relative to Southeast Asia92
Figure 3-3: The fault-parallel component of velocity versus distance from fault93
Figure 3-4: Slip vectors at the North Sulawesi trench94
Figure 4-1: Tectonic map of the Papua New Guinea region104
Figure 4-2: Comparison of 1973 and 1975 EDM to 1993 GPS measurements105
Figure 4-3: Fault plane solutions for October 1993 earthquakes and aftershocks106
Figure 4-4: Fault plane solutions and broadband waveforms for October 13 event107
Figure 4-5: Observed coseismic slip and dislocation modeling results108
Figure 4-6: Interpretive cross section of the Ramu-Markham fault109
Abstract

Here we present crustal velocities from Global Positioning System (GPS) measurements made between 1991 and 1997 at 56 sites throughout eastern Indonesia and Papua New Guinea (PNG). From these measurements, we interpret the relative motions of the plates and fault slip rates in the region.

Only a small amount of the Pacific-Australian plate convergence is accommodated at the New Guinea Highlands fold and thrust belt although it stands out as a major structural feature. East of 138° E, most of the plate convergence is taken up on faults lying north of the northern coast of Irian Jaya, including the New Guinea trench. West of 138° longitude, however, plate convergence drives rapid west-southwest motion (about 80 mm/yr) of the Bird's Head microplate relative to southern Irian Jaya. As a result, the Bird's Head continental crust is being subducted at about 50 mm/yr below the Banda Sea at the Seram trough, and only a small portion of the convergence is taken up between Bird's Head and the Pacific plate.

Pacific-Eurasian plate convergence is fully accommodated within the northern Molucca Sea. Southward, however, approximately 30% of this convergence is transferred to north-south convergence at the North Sulawesi trench by the rotation of the East Sulawesi microplate. The Banda Sea comprises a large shear zone. Left-lateral shear in the Banda Sea is accommodated differential motion between at least three crustal slivers.
Eurasian-Australian plate convergence is fully accommodated at the Java trench near Java. Eastward along the Banda arc, however, from Timor to Aru, Australian-Eurasian plate convergence is not actively accommodated at the Timor and Aru troughs. Instead, the Banda arc islands have been accreted to the northern margin of the Australian plate, and the boundary separating the plates has jumped to the north, probably to the Weta backarc thrust, where several large thrust earthquakes have occurred in recent years. West of the island of Timor, near 121°E, a north trending left-lateral shear zone with a slip rate of about 50 mm/yr is required to accommodate this differential motion.

Yearly GPS measurements on a small-aperture array crossing the fault from 1992-1995 indicate that the left-lateral strike-slip Palu fault in central Sulawesi slips at a rate between 26 and 46 mm/yr with a locking depth between 2 and 8 km. From the measured slip rate and the historic seismicity of the fault, we estimate the Palu fault currently has stored enough strain to produce a $M_w > 7$ earthquake. The Palu and other nearby faults accommodate rapid clockwise rotation of nearly 4°/Ma of East Sulawesi relative to eastern Sunda. The rotation of East Sulawesi transfers east-west shortening between the Pacific and Eurasian plates to north-south subduction of the Celebes Basin beneath Sulawesi.

In Papua New Guinea, earthquakes and geodetic evidence are used to infer the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley. Waveforms of three large ($M_w = 6.3$ to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre
Range 10 to 30 km north of the valley reveal gently, north-dipping thrusts at about 20 km depth. GPS measurements show up to 20 cm of coseismic slip across the valley requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range north of the valley steepens and shallows southward forming a high-angle ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.
Acknowledgements

Many people from various institutions have aided this research by providing funding, equipment, assistance with field work, and logistical and technical support. These institutions include Rensselaer Polytechnic Institute (RPI) in Troy, New York; Scripps Institution of Oceanography (SIO) in La Jolla, California; the University of California-Santa Cruz (UCSC) in Santa Cruz, California; the National Coordination Agency for Surveying and Mapping (BAKOSURTANAL) in Cibinong, Indonesia; the Meteorology Agency of Indonesia (MGA) in Jakarta, Indonesia; the National Mapping Bureau (NMB) of Papua New Guinea; the University of Technology (Unitech) in Lae, Papua New Guinea; the University of Papua New Guinea (UPNG) in Port Moresby, and Ecole Normale Superieure (ENS) in Paris, France.

I am grateful to the many surveyors from Indonesia and Papua New Guinea who participated in the field work. In total, more than 75 people have helped collect the data presented in this thesis. I give special thanks to Toto Puntodewo and Cecep Subarya from BAKOSURTANAL, who spent many hours hammering out the logistics for each field campaign in Indonesia. I also thank Peter English, Jan van der Kevie, and Wesley Loratung from NMB, Ted Nacino, Rod Little, and Russell Jackson from Unitech, and Hugh Davies from UPNG for the time and effort they put in to making our work in PNG possible.

Nyamadi, Chris Baggandi, Endang, Bambang, Bramantoro, Untung, and Mara Yale made my first trip to Indonesia unforgettable. Special thanks go to Nyamadi, who spent a few
months as my field partner in 1992. He curbed my homesickness and made Indonesia my “home away from home”. Many kind families throughout Indonesia and Papua New Guinea allowed me to stay in their homes, and made my trips very enjoyable.

I thank Rob McCaffrey, Steve Roecker, Mike Gaffey, Frank Spear, and Bill Kidd for serving as my thesis committee. I also thank Eric Calais and Yehuda Bock for teaching me how to use GAMIT, Yehuda Bock, Bob King, Tom Herring, Linette Prawirodirdjo, and Paul Tregoning for helpful discussions with GPS data processing, and Rob McCaffrey and Peter Zwick for provided me with useful computer programs. Julia Burrows checked my thesis for grammar errors.

I have been fortunate enough to meet and interact with many supportive people over the years. They include: Peter Zwick, Dave Wark, Fauzi, Masturyono, Arthur Chen, Ilya Dricker, Mara Yale, Eli Silver, Jeff Genrich, Laura Wallace, Christophe Vigny, Rod Little and his family, and Russell and Carole Jackson. I thank Patty Doyle and Spunky Robinson for always managing to make me laugh. I am grateful to the entire McCaffrey family for treating me as one of their own.

I would like to thank my parents, Martha and Raymond Stevens, for letting me make my own decisions in life, and for always being there for me. They and my brothers, Mark and Jeff Stevens, have given me unconditional support and love. I also thank Matt Reed, my husband, for aiding in my general emotional well-being, for his understanding and patience over the past few years, and for checking the final copy of my thesis for errors.
I was supported at Rensselaer Polytechnic Institute by National Science Foundation grants EAR-8908759, EAR-9114349, NSF EAR-9406917, EAR-9316344, and EAR-9706120 to Rob McCaffrey, and by grant EAR-9114864 to Yehuda Bock at SIO. The 1995 Palu transect measurements were funded by ENS in Paris, France.

Finally, I would like to thank Rob McCaffrey for his constant support and guidance over the past seven years. It has been both a pleasure and an honor to work with him.